DNS

Aus Zebradem WIKI
Zur Navigation springenZur Suche springen

Das Board mit Freiheiten





Das Domain Name System (DNS) ist einer der wichtigsten Dienste im Netzwerk. Seine Hauptaufgabe ist die Beantwortung von Anfragen zur Namensauflösung. In Analogie zu einer Telefonauskunft soll das DNS bei Anfrage mit einem Hostnamen (dem für Menschen merkbaren Namen eines Rechners im Internet) – zum Beispiel www.example.org – als Antwort die zugehörige IP-Adresse (die „Anschlussnummer“ im Internet) – zum Beispiel eine IPv4-Adresse der Form 192.0.2.42 oder eine IPv6-Adresse wie 2001:db8:85a3:8d3:1319:8a2e:370:7347 – nennen.


Überblick

Das DNS ist ein weltweit auf tausende von Servern verteilter hierarchischer Verzeichnisdienst, der den Namensraum des Internets verwaltet. Dieser Namensraum ist in so genannte Zonen unterteilt, für die jeweils unabhängige Administratoren zuständig sind. Für lokale Anforderungen – etwa innerhalb eines Firmennetzes – ist es auch möglich, ein vom Internet unabhängiges DNS zu betreiben. Hauptsächlich wird das DNS zur Umsetzung von Domainnamen in IP-Adressen („forward lookup“) benutzt. Dies ist vergleichbar mit einem Telefonbuch, das die Namen der Teilnehmer in ihre Telefonnummer auflöst. Das DNS bietet somit eine Vereinfachung, weil Menschen sich Namen weitaus besser merken können als Zahlenkolonnen. So kann man sich einen Domainnamen wie example.org in der Regel leichter merken als die dazugehörende IP-Adresse 192.0.32.10. Dieser Punkt gewinnt im Zuge der Einführung von IPv6 noch an Bedeutung, denn dann werden einem Namen jeweils IPv4- und IPv6-Adressen zugeordnet. So löst sich beispielsweise der Name www.kame.net in die IPv4-Adresse 203.178.141.194 und die IPv6-Adresse 2001:200:0:8002:203:47ff:fea5:3085 auf. Ein weiterer Vorteil ist, dass IP-Adressen – etwa von Web-Servern – relativ risikolos geändert werden können. Da Internetteilnehmer nur den (unveränderten) DNS-Namen ansprechen, bleiben ihnen Änderungen der untergeordneten IP-Ebene weitestgehend verborgen. Da einem Namen auch mehrere IP-Adressen zugeordnet werden können, kann sogar eine einfache Lastverteilung per DNS (Load Balancing) realisiert werden. Mit dem DNS ist auch eine umgekehrte Auflösung von IP-Adressen in Namen („reverse lookup“) möglich. In Analogie zum Telefonbuch entspricht dies einer Suche nach dem Namen eines Teilnehmers zu einer bekannten Rufnummer, was innerhalb der Telekommunikationsbranche unter dem Namen Inverssuche bekannt ist. Das DNS wurde 1983 von Paul Mockapetris entworfen und in RFC 882 und 883 beschrieben. Beide wurden inzwischen von RFC 1034 und RFC 1035 abgelöst und durch zahlreiche weitere Standards ergänzt. Ursprüngliche Aufgabe war es, die lokalen hosts-Dateien abzulösen, die bis dahin für die Namensauflösung zuständig waren und die der enorm zunehmenden Zahl von Neueinträgen nicht mehr gewachsen waren. Aufgrund der erwiesenermaßen hohen Zuverlässigkeit und Flexibilität wurden nach und nach weitere Datenbestände in das DNS integriert und so den Internetnutzern zur Verfügung gestellt (siehe unten: Erweiterung des DNS). DNS zeichnet sich aus durch:

  • dezentrale Verwaltung,
  • hierarchische Strukturierung des Namensraums in Baumform,
  • Eindeutigkeit der Namen,
  • Erweiterbarkeit.

Komponenten des DNS

Domain-Namensraum

schematische Darstellung der DNS-Hierarchie

Der Domain-Namensraum hat eine baumförmige Struktur. Die Blätter und Knoten des Baumes werden als Labels bezeichnet. Ein kompletter Domainname eines Objektes besteht aus der Verkettung aller Labels eines Pfades. Label sind Zeichenketten (alphanumerisch, als einziges Sonderzeichen ist '-' erlaubt), die mindestens ein Zeichen und maximal 63 Zeichen lang sind, mit einem Buchstaben oder einer Zahl beginnen müssen und nicht mit '-' enden dürfen (RFC 1035, Abschnitt „2.3.1. Preferred name syntax“). Einzelne Labels werden durch Punkte voneinander getrennt. Ein Domainname wird mit einem Punkt abgeschlossen (der letzte Punkt wird normalerweise weggelassen, gehört rein formal aber zu einem vollständigen Domainnamen dazu). Somit lautet ein korrekter, vollständiger Domainname (auch Fully Qualified Domain-Name (FQDN) genannt) zum Beispiel www.example.com. und darf inklusive aller Punkte maximal 255 Zeichen lang sein. Ein Domainname wird immer von rechts nach links delegiert und aufgelöst, das heißt je weiter rechts ein Label steht, umso höher steht es im Baum. Der Punkt am rechten Ende eines Domainnamens trennt das Label für die erste Hierarchieebene von der Wurzel (engl. root). Diese erste Ebene wird auch als Top-Level-Domain (TLD) bezeichnet. Die DNS-Objekte einer Domäne (zum Beispiel die Rechnernamen) werden als Satz von Resource Records meist in einer Zonendatei gehalten, die auf einem oder mehreren autoritativen Nameservern vorhanden ist. Anstelle von Zonendatei wird meist der etwas allgemeinere Ausdruck Zone verwendet.

Nameserver

Ein Nameserver ist ein Server, der Namensauflösung anbietet. Namensauflösung ist das Verfahren, das es ermöglicht Namen von Rechnern bzw. Diensten in eine vom Computer bearbeitbare Adresse aufzulösen (von bspw. www.wikipedia.org in 145.97.39.155). Die meisten Nameserver sind Teil des Domain Name System, das auch im Internet benutzt wird. Nameserver sind zum einen Programme, die Anfragen zum Domain-Namensraum beantworten, im Sprachgebrauch werden allerdings auch die Rechner, auf denen diese Programme laufen, als Nameserver bezeichnet. Man unterscheidet zwischen autoritativen und nicht-autoritativen Nameservern. Ein autoritativer Nameserver ist verantwortlich für eine Zone. Seine Informationen über diese Zone werden deshalb als gesichert angesehen. Für jede Zone existiert mindestens ein autoritativer Server, der Primary Nameserver. Dieser wird im SOA Resource Record einer Zonendatei aufgeführt. Aus Redundanz- und Lastverteilungsgründen werden autoritative Nameserver fast immer als Server-Cluster realisiert, wobei die Zonendaten identisch auf einem oder mehreren Secondary Nameservern liegen. Die Synchronisation zwischen Primary und Secondary Nameservern erfolgt per Zonentransfer. Ein nicht-autoritativer Nameserver bezieht seine Informationen über eine Zone von anderen Nameservern sozusagen aus zweiter oder dritter Hand. Seine Informationen werden als nicht gesichert angesehen. Da sich DNS-Daten normalerweise nur sehr selten ändern, speichern nicht-autoritative Nameserver die einmal von einem Resolver angefragten Informationen im lokalen RAM ab, damit diese bei einer erneuten Anfrage schneller vorliegen. Diese Technik wird als Caching bezeichnet. Jeder dieser Einträge besitzt ein eigenes Verfallsdatum (TTL time to live), nach dessen Ablauf der Eintrag aus dem Cache gelöscht wird. Die TTL wird dabei durch einen autoritativen Nameserver für diesen Eintrag festgelegt und wird nach der Änderungswahrscheinlichkeit des Eintrages bestimmt (sich häufig ändernde DNS-Daten erhalten eine niedrige TTL). Das kann unter Umständen aber auch bedeuten, dass der Nameserver in dieser Zeit falsche Informationen liefern kann, wenn sich die Daten zwischenzeitlich geändert haben. Ein Spezialfall ist der Caching Only Nameserver. In diesem Fall ist der Nameserver für keine Zone verantwortlich und muss alle eintreffenden Anfragen über weitere Nameserver (Forwarder) auflösen. Dafür stehen verschiedene Strategien zur Verfügung: Zusammenarbeit der einzelnen Nameserver Damit ein nicht-autoritativer Nameserver Informationen über andere Teile des Namensraumes finden kann, bedient er sich folgender Strategien:

  • Delegierung

Teile des Namensraumes einer Domain werden oft an Subdomains mit dann eigens zuständigen Nameservern ausgelagert. Ein Nameserver einer Domäne kennt die zuständigen Nameserver für diese Subdomains aus seiner Zonendatei und delegiert Anfragen zu diesem untergeordneten Namensraum an einen dieser Nameserver.

  • Weiterleitung (forwarding)

Falls der angefragte Namensraum außerhalb der eigenen Domäne liegt, wird die Anfrage an einen fest konfigurierten Nameserver weitergeleitet.

  • Auflösung über die Root-Server

Falls kein Weiterleitungsserver konfiguriert wurde oder dieser nicht antwortet, werden die Root-Server befragt. Dazu werden in Form einer statischen Datei die Namen und IP-Adressen der Root-Server hinterlegt. Es gibt 13 Root-Server (Server A bis M). Die Root-Server beantworten ausschließlich iterative Anfragen. Sie wären sonst mit der Anzahl der Anfragen schlicht überlastet.

Anders konzipierte Namensauflösungen durch Server, wie der NetWare Name Service oder der Windows Internet Naming Service, sind meistens auf Local Area Networks beschränkt und werden zunehmend von der Internetprotokollfamilie verdrängt.

Resolver

schematische Darstellung der rekursiven und iterativen DNS-Abfrage

Resolver sind einfach aufgebaute Software-Module, die auf dem Rechner eines DNS-Teilnehmers installiert sind und die Informationen von Nameservern abrufen können. Sie bilden die Schnittstelle zwischen Anwendung und Nameserver. Der Resolver übernimmt die Anfrage einer Anwendung, ergänzt sie, falls notwendig, zu einem FQDN und übermittelt sie an einen normalerweise fest zugeordneten Nameserver. Ein Resolver arbeitet entweder rekursiv oder iterativ. Im rekursiven Modus schickt der Resolver eine rekursive Anfrage an den ihm zugeordneten Nameserver. Hat dieser die gewünschte Information nicht im eigenen Datenbestand, so kontaktiert der Nameserver weitere Server, und zwar solange bis er entweder eine positive Antwort oder bis er von einem autoritativen Server eine negative Antwort erhält. Rekursiv arbeitende Resolver überlassen also die Arbeit zur vollständigen Auflösung ihrem Nameserver. Bei einer iterativen Anfrage bekommt der Resolver entweder den gewünschten Resource Record oder einen Verweis auf weitere Nameserver, die er als nächstes fragt. Der Resolver hangelt sich so von Nameserver zu Nameserver, bis er von einem eine verbindliche Antwort erhält. Die so gewonnene Antwort übergibt der Resolver an das Programm, das die Daten angefordert hat, beispielsweise an den Webbrowser. Übliche Resolver von Clients arbeiten ausschließlich rekursiv, sie werden dann auch als Stub-Resolver bezeichnet. Nameserver besitzen in der Regel eigene Resolver. Diese arbeiten gewöhnlich iterativ. Bekannte Programme zur Überprüfung der Namensauflösung sind nslookup, host und dig. Weitere Informationen zur iterativen/rekursiven Namensauflösung finden sich unter rekursive und iterative Namensauflösung.

Protokoll

DNS-Anfragen werden normalerweise per UDP Port 53 zum Namensserver gesendet. Der DNS-Standard erlaubt aber auch TCP. Falls kein Extended DNS verwendet wird (EDNS), beträgt die maximal zulässige Länge des DNS-UDP-Pakets 512 Bytes. Überlange Antworten werden daher abgeschnitten übertragen. Durch Setzen des Truncated-Flags wird der anfragende Client über diesen Sachverhalt informiert. Er muss dann entscheiden, ob ihm die Antwort reicht oder nicht. Gegebenenfalls wird er die Anfrage per TCP Port 53 wiederholen. Zonentransfers werden stets über Port 53 TCP durchgeführt. Die Auslösung von Zonentransfers erfolgt aber gewöhnlich per UDP.

Aufbau der DNS-Datenbank

Das Domain Name System kann als verteilte Datenbank mit baumförmiger Struktur aufgefasst werden. Beim Internet-DNS liegen die Daten auf einer Vielzahl von weltweit verstreuten Servern, die untereinander über Verweise – in der DNS-Terminologie Delegierungen genannt – verknüpft sind.

In jedem beteiligten Nameserver existieren eine oder mehrere Dateien – die so genannten (DNS)|Zonendateien – die alle relevanten Daten enthalten. Bei diesen Dateien handelt es sich um Listen von Resource Records. Von großer Bedeutung sind sieben Record-Typen:

  • Mit dem SOA Resource Record werden Parameter der (DNS)|Zone, wie z. B. Gültigkeitsdauer oder Seriennummer, festgelegt.
  • Mit dem NS Resource Record werden die Verknüpfungen (Delegierungen) der Server untereinander realisiert.
  • Mit folgenden Record-Typen werden die eigentlichen Daten definiert:
    • Ein A Resource Record weist einem Namen eine IPv4-Adresse zu.
    • Ein AAAA Resource Record weist einem Namen eine IPv6-Adresse zu.
    • Ein CNAME Resource Record verweist von einem Namen auf einen anderen Namen.
    • Ein MX Resource Record weist einem Namen einen Mailserver zu. Er stellt eine Besonderheit dar, da er sich auf einen speziellen Dienst im Internet, nämlich die E-Mailzustellung mittels SMTP bezieht. Alle anderen Dienste nutzen CNAME, A und AAAA Resource Records für die Namensauflösung.
    • Ein PTR Resource Record weist einer IP-Adresse einen Namen zu (Reverse Lookup) und wird für IPv4 und IPv6 gleichermaßen benutzt, nur für IPv4 unterhalb der Domain „IN-ADDR.ARPA.“ und für IPv6 unterhalb von „IP6.ARPA.“.

Im Laufe der Zeit wurden neue Typen definiert, mit denen Erweiterungen des DNS realisiert wurden. Dieser Prozess ist noch nicht abgeschlossen. Eine umfassende Liste findet sich unter Resource Record.

Beispiele:

Folgender NS Resource Record ist in der Zonendatei der Domain „org.“ definiert: Die Zonendatei für die Domain „wikipedia.org.“ befindet sich auf dem Server „ns0.wikimedia.org.“. Der Punkt am Ende ist wichtig, da dieser klarstellt, dass kein relativer Name gemeint ist, also hinter „org“ nichts mehr zu ergänzen ist. „IN“ meint, dass der Eintrag die Klasse „Internet“ besitzt und die Zahl davor bedeutet die Time To Live (TTL) in Sekunden, sie besagt, wie lange diese Information in einem Cache zwischengespeichert werden könnte, bevor sie neu erfragt werden sollte. Bei dynamischen IP-Adressen liegt diese Zahl meistens zwischen 20 und 300 Sekunden.

wikipedia   86400  IN  NS   ns0.wikimedia.org.

Folgender CNAME Resource Record in der Zonendatei der Domain „wikipedia.org.“ definiert: Der Name „de.wikipedia.org.“ verweist auf den Namen „rr.wikimedia.org.“.

de          3600   IN  CNAME   rr.wikimedia.org.

Folgende Resource Records in der Zonendatei der Domain „wikimedia.org.“ definieren: Der Name „rr.wikimedia.org.“ verweist auf den Namen „rr.esams.wikimedia.org.“ und diesem wiederum ist die IPv4-Adresse 91.198.174.2 zugewiesen.

rr          600    IN  CNAME   rr.esams
rr.esams    3600   IN  A       91.198.174.2

Letztlich müssen also alle Rechner, die sich mit „de.wikipedia.org.“ verbinden möchten, IPv4-Pakete an die IP-Adresse 91.198.174.2 senden.

Auflösung eines DNS-Requests

Flussdiagramm
Flussdiagramm

Angenommen, ein Rechner X will eine Verbindung zu „de.wikipedia.org.“ (Rechner Y) aufbauen. Dazu braucht er dessen IP-Adresse. In den folgenden Schritten wird beschrieben, wie dies ablaufen könnte. Falls der Rechner X IPv6-fähig ist, läuft der Vorgang zunächst für IPv6 (Abfrage von AAAA Resource Record) und sofort danach für IPv4 (Abfrage von A Resource Record) ab. Dabei kann eine Anfrage nach einer IPv6-Adresse mittels IPv4-Übertragung an einen IPv4-DNS-Server gerichtet werden. Falls am Ende eine IPv6- und eine IPv4-Adresse für Rechner Y ermittelt werden, wird in der Regel laut der Default Policy Table in RFC 3484 die Kommunikation zwischen X und Y über IPv6 bevorzugt, es sei denn im Betriebssystem oder in den benutzten Anwendungen, wie zum Beispiel dem Webbrowser, wurde dieses Verhalten anders eingestellt.






  1. Der Rechner X sucht in seiner Hosts-Datei, ob die IP-Adresse für „de.wikipedia.org“ dort hinterlegt ist. Falls dem nicht so ist, fragt er beim DNS-Server nach. Dieser ist entweder fest eingetragen oder wurde per DHCP bzw. DHCPv6 automatisch zugewiesen und hat die Form nameserver 192.0.2.23 oder nameserver 2001:db8::23:cafe:affe:42.
  2. Hat der DNS-Server von Rechner X eine IP-Adresse für den angefragten Namen zwischengespeichert, antwortet er damit und die Anfrage kommt zum Ende (siehe letzter Punkt). Andernfalls fragt er einen der 13 Root-Nameserver nach „de.wikipedia.org.“.
  3. Der Root-Nameserver findet heraus, dass die Auflösung dieses Namens in der „org.“-Zone weitergeht und sendet die Namen und die IP-Adressen der „org.“-Nameserver (NS Resource Records und deren AAAA bzw. A Resource Records) zum DNS-Server von Rechner X.
  4. Nun fragt der DNS-Server von Rechner X einen der Nameserver für „org.“-Domains nach „de.wikipedia.org.“.
  5. Der „org.“-Nameserver sendet ihm die Namen der Nameserver (und deren IP-Adressen, sofern sie zur selben Top-Level-Domain gehören) für die Zone „wikipedia.org.“.
  6. Anschließend fragt der DNS-Server von Rechner X einen „wikipedia.org.“-Nameserver wie die IP-Adresse des Namens "de.wikipedia.org." ist.
  7. Mit dieser Adresse wird an den DNS-Server von Rechner X geantwortet und der …
  8. … sendet sie an den Rechner X, welcher nun zum Beispiel seine HTTP-Anfragen an die IP-Adresse von „de.wikipedia.org.“ senden kann.

Beispiel Namensauflösung

Im folgenden, kommentierten Beispiel wird zum Namen „www.heise.de.“ die IPv4-Adresse mit Hilfe des Resolver-Tools dig bestimmt. „+trace“ bedeutet, dass die einzelnen Antworten auf iterative Anfragen an die Nameserver-Hierarchie angegeben werden, „+additional“ sorgt dafür, dass zusätzlich dargestellt wird, dass die Nameserver für Delegierungen nicht nur NS Resource Records verwalten, sondern teilweise auch deren IP-Adressen in Form von A oder AAAA Resource Records kennen und mit ausliefern, „-t A“ schließlich verlangt nach dem A Resource Record, also der IPv4-Adresse. Es zeigt sich, dass nacheinander vier Nameserver befragt werden müssen, um zur Antwort zu gelangen:

$ dig +trace +additional -t A www.heise.de.
; <<>> DiG 9.5.1-P3 <<>> +trace +additional -t A www.heise.de.
;; global options:  printcmd
.                       6086    IN      NS      B.ROOT-SERVERS.NET.
.                       6086    IN      NS      D.ROOT-SERVERS.NET.
.                       6086    IN      NS      J.ROOT-SERVERS.NET.
.                       6086    IN      NS      G.ROOT-SERVERS.NET.
.                       6086    IN      NS      K.ROOT-SERVERS.NET.
.                       6086    IN      NS      C.ROOT-SERVERS.NET.
.                       6086    IN      NS      M.ROOT-SERVERS.NET.
.                       6086    IN      NS      I.ROOT-SERVERS.NET.
.                       6086    IN      NS      H.ROOT-SERVERS.NET.
.                       6086    IN      NS      E.ROOT-SERVERS.NET.
.                       6086    IN      NS      F.ROOT-SERVERS.NET.
.                       6086    IN      NS      A.ROOT-SERVERS.NET.
.                       6086    IN      NS      L.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET.     6644    IN      A       128.8.10.90
J.ROOT-SERVERS.NET.     10421   IN      A       192.58.128.30
J.ROOT-SERVERS.NET.     1289    IN      AAAA    2001:503:c27::2:30
G.ROOT-SERVERS.NET.     10940   IN      A       192.112.36.4
K.ROOT-SERVERS.NET.     4208    IN      A       193.0.14.129
K.ROOT-SERVERS.NET.     7277    IN      AAAA    2001:7fd::1
C.ROOT-SERVERS.NET.     6126    IN      A       192.33.4.12
M.ROOT-SERVERS.NET.     3274    IN      A       202.12.27.33
M.ROOT-SERVERS.NET.     7183    IN      AAAA    2001:dc3::35
I.ROOT-SERVERS.NET.     9788    IN      A       192.36.148.17
H.ROOT-SERVERS.NET.     10421   IN      A       128.63.2.53
H.ROOT-SERVERS.NET.     13739   IN      AAAA    2001:500:1::803f:235
E.ROOT-SERVERS.NET.     11125   IN      A       192.203.230.10
F.ROOT-SERVERS.NET.     9973    IN      A       192.5.5.241
;; Received 500 bytes from 192.168.2.1#53(192.168.2.1) in 50 ms

192.168.2.1 (siehe letzte Zeile) ist der eingetragene Nameserver des abfragenden Rechners, welcher auf die Root-Nameserver verweist, die die TLD-Zone (Zone, die die Nameserver für .org, .de, .com, … enthält) verwalten und alle weiter via IPv4 befragt werden können, einige zusätzlich auch mittels IPv6. Die Root-Nameserver verwalten die Wurzel der Namensauflösung, dargestellt durch einen Punkt. Die IP-Adressen der Root-Nameserver ändern sich sehr selten und müssen allen Nameservern bekannt sein, sofern sie das Internet betreffende Anfragen beantworten. (Diese IP-Adressen können beispielsweise in einer als "Root Hints" bezeichneten Textdatei mitgeliefert werden.)

de.                     172800  IN      NS      F.NIC.de.
de.                     172800  IN      NS      L.DE.NET.
de.                     172800  IN      NS      S.DE.NET.
de.                     172800  IN      NS      Z.NIC.de.
de.                     172800  IN      NS      A.NIC.de.
de.                     172800  IN      NS      C.DE.NET.
A.NIC.de.               172800  IN      A       194.0.0.53
C.DE.NET.               172800  IN      A       208.48.81.43
F.NIC.de.               172800  IN      A       81.91.164.5
F.NIC.de.               172800  IN      AAAA    2001:608:6:6::10
L.DE.NET.               172800  IN      A       89.213.253.189
S.DE.NET.               172800  IN      A       195.243.137.26
Z.NIC.de.               172800  IN      A       194.246.96.1
Z.NIC.de.               172800  IN      AAAA    2001:628:453:4905::53
;; Received 288 bytes from 192.36.148.17#53(I.ROOT-SERVERS.NET) in 58 ms

Aus den 13 genannten Root-Nameservern wurde zufällig „I.ROOT-SERVERS.NET.“ ausgewählt, um ihm die Frage nach „www.heise.de.“ zu stellen. Er antwortete mit sechs Nameservern zur Auswahl, die für die Zone „de.“ verantwortlich sind. Auch hier ist bei zwei Servern die Abfrage mittels IPv6 möglich.

heise.de.               86400   IN      NS      ns.plusline.de.
heise.de.               86400   IN      NS      ns.heise.de.
heise.de.               86400   IN      NS      ns2.pop-hannover.net.
heise.de.               86400   IN      NS      ns.pop-hannover.de.
heise.de.               86400   IN      NS      ns.s.plusline.de.
ns.s.plusline.de.       86400   IN      A       212.19.40.14
ns.heise.de.            86400   IN      A       193.99.145.37
ns.plusline.de.         86400   IN      A       212.19.48.14
ns.pop-hannover.de.     86400   IN      A       193.98.1.200
;; Received 220 bytes from 81.91.164.5#53(F.NIC.de) in 52 ms

Aus den sechs genannten Nameservern wurde zufällig „F.NIC.de.“ ausgewählt, um Näheres über „www.heise.de.“ zu erfahren. Er beantwortet die Anfrage mit fünf möglichen Delegierungen. Unter anderem mit einer Delegierung auf den Server „ns.heise.de.“. Diese Information würde ohne den dazugehörigen A Resource Record, auf 193.99.145.37 zeigend, auf demselben Server nichts helfen, denn der Name liegt in der Zone „heise.de.“, die er selbst verwaltet. Man spricht bei dieser Art von Information auch von Glue Records (von engl. glue, kleben). Sollte der Server „ns2.pop-hannover.net.“ für den nächsten Schritt ausgewählt werden, so wäre in einer gesonderten Namensauflösung zunächst dessen IP-Adresse zu bestimmen, da diese hier nicht mitgesendet wurde.

www.heise.de.           86400   IN      A       193.99.144.85
heise.de.               86400   IN      NS      ns.pop-hannover.de.
heise.de.               86400   IN      NS      ns.plusline.de.
heise.de.               86400   IN      NS      ns2.pop-hannover.net.
heise.de.               86400   IN      NS      ns.s.plusline.de.
heise.de.               86400   IN      NS      ns.heise.de.
ns.heise.de.            86400   IN      A       193.99.145.37
ns.pop-hannover.de.     10800   IN      A       193.98.1.200
ns2.pop-hannover.net.   86400   IN      A       62.48.67.66
;; Received 220 bytes from 193.98.1.200#53(ns.pop-hannover.de) in 4457 ms

Aus den fünf genannten Nameservern wurde zufällig „ns.pop-hannover.de.“ herangezogen, um die Frage nach „www.heise.de.“ zu beantworten. Die Antwort lautet 193.99.144.85. Damit ist die Anfrage am Ziel angelangt. Es werden auch wieder dieselben Nameserver als verantwortlich für „heise.de.“ genannt, ohne also auf andere Nameserver zu verweisen.

Beispiel Reverse Lookup

Für den Reverse Lookup, also das Auffinden eines Namens zu einer IP-Adresse, wandelt man die IP-Adresse zunächst formal in einen Namen um, für den man dann das DNS nach einem PTR Resource Record befragt. Da die Hierarchie bei IP-Adressen von links nach rechts spezieller wird (siehe Subnetz), beim DNS aber von rechts nach links, dreht man beim ersten Schritt die Reihenfolge der Zahlen um und aus der IPv4-Adresse 193.99.144.85 wird z. B. der Name „85.144.99.193.in-addr.arpa.“ sowie aus der IPv6-Adresse 2a02:2e0:3fe:100::6 der Name „6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.e.f.3.0.0.e.2.0.2.0.a.2.ip6.arpa.“ erzeugt. (Dieser Name ist lang, da die implizit enthaltenen Nullen nun wieder explizit genannt werden müssen.)

Der PTR Resource Record für die so umgeformte IPv4-Adresse lässt sich analog zum vorigen Beispiel bestimmen:

$ dig +trace +additional -t PTR 85.144.99.193.in-addr.arpa.
; <<>> DiG 9.5.1-P3 <<>> +trace +additional -t ptr 85.144.99.193.in-addr.arpa.
;; global options:  printcmd
.                       2643    IN      NS      M.ROOT-SERVERS.NET.
.                       2643    IN      NS      A.ROOT-SERVERS.NET.
.                       2643    IN      NS      B.ROOT-SERVERS.NET.
.                       2643    IN      NS      C.ROOT-SERVERS.NET.
.                       2643    IN      NS      D.ROOT-SERVERS.NET.
.                       2643    IN      NS      E.ROOT-SERVERS.NET.
.                       2643    IN      NS      F.ROOT-SERVERS.NET.
.                       2643    IN      NS      G.ROOT-SERVERS.NET.
.                       2643    IN      NS      H.ROOT-SERVERS.NET.
.                       2643    IN      NS      I.ROOT-SERVERS.NET.
.                       2643    IN      NS      J.ROOT-SERVERS.NET.
.                       2643    IN      NS      K.ROOT-SERVERS.NET.
.                       2643    IN      NS      L.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET.     10978   IN      A       198.41.0.4
A.ROOT-SERVERS.NET.     2470    IN      AAAA    2001:503:ba3e::2:30
C.ROOT-SERVERS.NET.     387     IN      A       192.33.4.12
D.ROOT-SERVERS.NET.     2747    IN      A       128.8.10.90
E.ROOT-SERVERS.NET.     7183    IN      A       192.203.230.10
F.ROOT-SERVERS.NET.     14225   IN      AAAA    2001:500:2f::f
H.ROOT-SERVERS.NET.     7950    IN      A       128.63.2.53
H.ROOT-SERVERS.NET.     13245   IN      AAAA    2001:500:1::803f:235
I.ROOT-SERVERS.NET.     6172    IN      A       192.36.148.17
J.ROOT-SERVERS.NET.     7168    IN      A       192.58.128.30
J.ROOT-SERVERS.NET.     13860   IN      AAAA    2001:503:c27::2:30
K.ROOT-SERVERS.NET.     3541    IN      A       193.0.14.129
K.ROOT-SERVERS.NET.     9369    IN      AAAA    2001:7fd::1
L.ROOT-SERVERS.NET.     3523    IN      A       199.7.83.42
;; Received 512 bytes from 192.168.2.1#53(192.168.2.1) in 50 ms

193.in-addr.arpa.       86400   IN      NS      ns3.nic.fr.
193.in-addr.arpa.       86400   IN      NS      sec1.apnic.net.
193.in-addr.arpa.       86400   IN      NS      sec3.apnic.net.
193.in-addr.arpa.       86400   IN      NS      sunic.sunet.se.
193.in-addr.arpa.       86400   IN      NS      ns-pri.ripe.net.
193.in-addr.arpa.       86400   IN      NS      sns-pb.isc.org.
193.in-addr.arpa.       86400   IN      NS      tinnie.arin.net.
;; Received 239 bytes from 199.7.83.42#53(L.ROOT-SERVERS.NET) in 170 ms

99.193.in-addr.arpa.    172800  IN      NS      auth50.ns.de.uu.net.
99.193.in-addr.arpa.    172800  IN      NS      ns.ripe.net.
99.193.in-addr.arpa.    172800  IN      NS      auth00.ns.de.uu.net.
;; Received 120 bytes from 202.12.28.140#53(sec3.apnic.net) in 339 ms

144.99.193.in-addr.arpa. 86400  IN      NS      ns.heise.de.
144.99.193.in-addr.arpa. 86400  IN      NS      ns.s.plusline.de.
144.99.193.in-addr.arpa. 86400  IN      NS      ns.plusline.de.
;; Received 114 bytes from 194.128.171.99#53(auth50.ns.de.uu.net) in 2456 ms

85.144.99.193.in-addr.arpa. 86400 IN    PTR     www.heise.de.
144.99.193.in-addr.arpa. 86400  IN      NS      ns.heise.de.
144.99.193.in-addr.arpa. 86400  IN      NS      ns.s.plusline.de.
144.99.193.in-addr.arpa. 86400  IN      NS      ns.plusline.de.
ns.heise.de.            86400   IN      A       193.99.145.37
;; Received 148 bytes from 193.99.145.37#53(ns.heise.de) in 4482 ms

Die Antwort lautet also „www.heise.de.“. Es ist jedoch weder notwendig, dass jeder IP-Adresse ein Name zugeordnet ist, noch müssen Hin- und Rückauflösung einander entsprechen. Die Auflösung beginnt wieder mit dem Verweis auf die Root-Nameserver und die Delegierungen finden offensichtlich an den durch Punkte markierten Grenzen zwischen den Zahlen statt. Man sieht in dem Beispiel jedoch auch, dass nicht an jedem Punkt in einem Namen delegiert werden muss.

DNS Serverliste

http://www.stanar.de/

DNS Check

http://www.dnswatch.info/de

Quellenangaben

http://de.wikipedia.org

[ nach Oben ]
[Zurück zu Netzwerk]

[Zurück zu Hauptseite]