USB

Aus Zebradem WIKI
Zur Navigation springenZur Suche springen

Das Board mit Freiheiten




Der Universal Serial Bus (USB) ist ein serielles Bussystem zur Verbindung eines Computers mit externen Geräten. Mit USB ausgestattete Geräte oder Speichermedien können im laufenden Betrieb miteinander verbunden (Hot-Plugging) und angeschlossene Geräte sowie deren Eigenschaften automatisch erkannt werden.

USB-Symbol (Zertifizierung nicht notwendig)
Altes USB-Logo, das nicht mehr verwendet werden soll

Überblick

USB ist ein serieller Bus, d. h. die einzelnen Bits eines Datenpaketes werden nacheinander übertragen. Die Datenübertragung erfolgt symmetrisch über zwei verdrillte Leitungen, die eine überträgt das Datensignal, die andere das dazu invertierte Signal. Der Signalempfänger bildet die Differenzspannung beider Signale; der Spannungsunterschied zwischen 1- und 0-Pegeln ist dadurch doppelt so groß, eingestrahlte Störungen werden weitgehend eliminiert. Das erhöht die Übertragungssicherheit und unterdrückt Gleichtaktstörungen. Zwei weitere Leitungen dienen zur Stromversorgung der angeschlossenen Geräte. Durch die Verwendung von nur vier Adern in einer Leitung können diese dünner und billiger ausgeführt werden als bei parallelen Schnittstellen. Eine hohe Datenübertragungsrate ist mit relativ geringem Aufwand zu erreichen, da nicht mehrere Signale mit identischem elektrischen und zeitlichen Verhalten übertragen werden müssen.

Die Bus-Spezifikation sieht einen zentralen Host-Controller (Master) vor, der die Koordination der angeschlossenen Peripherie-Geräte (den sog. Slave-Clients) übernimmt. Daran können theoretisch bis zu 127 verschiedene Geräte angeschlossen werden. An einem USB-Port kann immer nur ein USB-Gerät angeschlossen werden. Sollen an einem Host mehrere Geräte angeschlossen werden, muss deshalb ein Verteiler (Hub) für deren Kopplung sorgen. Durch den Einsatz von Hubs entstehen Baumstrukturen, die alle im Host-Controller enden.

Einsatzgebiete von USB

USB eignet sich für viele Geräte wie Massenspeicher (etwa Festplatte, Diskette, DVD-Laufwerk), Drucker, Scanner, Webcams, Maus, Tastatur, aber auch Dongles und sogar Grafikkarten und Monitore. Einige Geräte, zum Beispiel USB-Speichersticks, sind überhaupt erst mit USB entstanden. USB kann für Geräte mit geringem Stromverbrauch wie Mäuse, Telefone, Tastaturen, aber auch einige CIS-Scanner oder manche 2,5-Zoll-Festplatten die Stromversorgung übernehmen.

USB soll viele ältere externe PC-Schnittstellen ersetzen, sowohl serielle (RS-232, PS/2-Schnittstelle) für Tastatur und Maus, Apple Desktop Bus, parallele (Centronics-Schnittstelle) als auch analoge (Gameport). Die alten Schnittstellen werden auf manchen Rechner-Hauptplatinen und Notebooks noch immer (2011) angeboten, auch wenn entsprechende Geräte nicht mehr im Handel erhältlich sind. Alte Geräte, wie serielle Modems oder parallele Drucker sind aber vielerorts noch vorhanden. Im industriellen Bereich wird noch oft RS-232 über ältere PCs oder Adapterkarten eingesetzt, da entsprechende USB-Adapter nicht echtzeitfähig sind und Peripheriegeräte in diesem Umfeld wesentlich langlebiger sind. Mittlerweile hat USB auch PCMCIA-Slots und externe SCSI-Schnittstellen weitgehend verdrängt.

Im Vergleich zu den früheren Lösungen bietet USB deutlich höhere Datenübertragungsraten. Die Daten werden jedoch in Paketen übertragen, für manche zeitkritische Anwendungen ist es deshalb weniger geeignet – etwa bei mit nur wenigen Bytes belegten Paketen, die die Übertragungsrate senken, oder wenn das Sammeln von Bytes zum Füllen eines Pakets die Übertragung verzögern würde.

Seit der Einführung der USB-2.0-Spezifikation sind relativ hohe Datenübertragungsraten möglich, dadurch ist USB zum Anschluss weiterer Gerätearten wie Festplatten, TV-Schnittstellen und Foto-Kameras geeignet. Bei externen Massenspeicherlösungen steht USB heute in Konkurrenz zu FireWire und eSATA.

Geschichte und Entwicklung

USB-2.0-PCI-Erweiterungskarte

Der universelle serielle Bus (USB 1.0) wurde vom Hersteller Intel entwickelt und 1996 im Markt eingeführt. Er war zum Anschluss von Peripheriegeräten an PCs konzipiert und sollte die Nachfolge einer ganzen Reihe damals verwendeter PC-Schnittstellen antreten und diese vereinheitlichen. Deshalb war die USB-Spezifikation nicht auf Tastatur und Maus begrenzt, sondern schloss auch andere Peripheriegeräte wie Drucker und Scanner mit ein. Massenspeicher – wie etwa Festplatten – wurden zwar von USB 1.0 unterstützt, wegen der maximalen Datenrate von 12 Mbit/s waren sie dafür aber nur sehr eingeschränkt zu gebrauchen.

Als einer der ersten Chipsätze unterstützte 1996 der ursprünglich für den Pentium Pro entwickelte und später für den Pentium II verwendete 440FX das USB-Protokoll, was vor Einführung der ATX-Mainboards jedoch kaum bis gar nicht beworben wurde. Die Hauptursache dafür dürfte zum einen in der mangelhaften beziehungsweise fehlenden Unterstützung von USB durch die damals verbreiteten Betriebssysteme Windows 95 und Windows NT 4.0 gelegen haben, zum anderen waren in der Anfangszeit auch kaum USB-Geräte verfügbar. Dieser zähe Start brachte ihm den Spitznamen Useless Serial Bus ein.

Ende 1998 folgte die überarbeitete Spezifikation USB 1.1, die in erster Linie Fehler und Unklarheiten in der 1.0-Spezifikation behob und den Interrupt Out Transfer hinzufügte. Die Geschwindigkeit erhöhte sich nicht. USB 1.x war deshalb keine Konkurrenz zu Apples FireWire-Standard (IEEE 1394), der von Anfang an (1995) eine Datenrate von bis zu 400 Mbit/s hatte und im April 2003 auf bis zu 800 Mbit/s beschleunigt wurde. Dennoch setzte Apple die Schnittstelle in der Revision USB 1.1 mit der Entwicklung des iMac ein. Mit diesem beginnend, ersetzte Apple damit den hauseigenen ADB.

Im Jahr 2000 wurde USB 2.0 spezifiziert, was vor allem eine weitere Datenrate von 480 Mbit/s hinzufügte und so den Anschluss von Festplatten oder Videogeräten ermöglichte. Produkte dafür erschienen jedoch erst ab 2002 am Markt.

2008 wurden die neuen Spezifikationen für USB 3.0 SuperSpeed vorgestellt, die eine Brutto-Datentransferraten von maximal 5,0 Gbit/s angibt. Aktuell wird allerdings eine Netto-Datenrate von 3,2 Gbit/s erreicht. Mit dieser Spezifikation werden auch neue Stecker, Kabel und Buchsen eingeführt, die größtenteils mit den alten kompatibel sind.

Stromversorgung

Zu beachten ist, dass pro Anschluss maximal lediglich 500 mA (High Power) oder 100 mA (Low Power) bei 5 Volt als Stromversorgung am USB-Port zugesichert werden müssen.

Externe 3,5"-Festplatten lassen sich nicht ohne externe Stromquelle anschließen, da diese 12 V als Betriebsspannung benötigen und damit durch das Umwandeln der zur Verfügung stehenden Spannung auf die notwendige Betriebsspannung zusätzlicher Strombedarf entstünde und der durchschnittliche Gesamtenergiebedarf während des Betriebs daher weit über die spezifizierten 500 mA (üblicherweise 800 bis über 1000 mA) hinausgehen würde.

Externe 2,5"-Festplatten haben Anlaufströme von 600 mA bis 1100 mA, im Betrieb begnügen sie sich mit 250 mA bis 400 mA (Stand: 2010). Die kurzzeitige Überlastung des USB-Ports wird von fast allen Geräten geduldet, nur wenige Geräte (meist Festplattenrecorder) haben mit besonders stromhungrigen Festplatten Probleme. Die früher häufig zu findenden Doppel-USB-Anschlüsse (die laut USB-Spezifikation nicht zulässig sind) oder zusätzliche Betriebsspannungseingänge an Festplatten sind selten geworden (Stand: 2011).

Externe 1,8"-Festplatten liegen mit Anlaufströmen um die 400 mA und Betriebsströmen um die 150 mA innerhalb der USB-Spezifikation und bereiten somit keine Probleme.

Mit USB 3.0, dessen Spezifikation 2008 vorgestellt wurde und das seit 2010 erhältlich ist, wird auch die Stromversorgung auf 900 mA erhöht. Damit ist die Stromversorgung vieler, aber nicht aller, im Handel erhältlichen externen 2,5"-Festplatten unter Einhaltung der USB-Spezifikationen gesichert.

In der EU-Initiative für einheitliche Mobiltelefon-Lade/Netzgeräte, welche sich im Wesentlichen an die 2009 in Version 1.1 erschienene USB „Battery Charging Specification“ anlehnt, ist auch ein USB Lademodus mit einem Ladestrom zwischen 500 und 1500 mA spezifiziert; dieser Lademodus wird mittels Kennung (EU-Spezifiziert) in der Datenleitung aktiviert.

Übertragungstechnik/Spezifikation

Die verschiedenen Host-Controller

Die USB-Controller-Chips in den PCs halten sich an einen von drei etablierten Standards. Diese unterscheiden sich in ihrer Leistungsfähigkeit und der Implementierung von bestimmten Funktionen. Für ein USB-Gerät sind die verwendeten Controller (fast) vollständig transparent, allerdings ist es für den Benutzer des PC mitunter wichtig, feststellen zu können, welche Art Chip der Rechner verwendet, um den korrekten Treiber auswählen zu können.

Universal Host Controller Interface
UHCI wurde im November 1995 von Intel spezifiziert. Die aktuelle Version des Dokuments trägt die Revisionsnummer 1.1. UHCI-Chips bieten Unterstützung für USB-Geräte mit 1,5 oder 12 Mbit/s Datenrate im Low- oder Full-Speed-Modus. Sie werden ausschließlich von den Herstellern Intel und VIA Technologies gebaut.
Open Host Controller Interface
OHCI ist eine Spezifikation, die gemeinsam von Compaq, Microsoft und National Semiconductor entwickelt wurde. Version 1.0 des Standards wurde im Dezember 1995 veröffentlicht, die aktuelle Fassung trägt die Versionsnummer 1.0a und stammt von September 1999. Ein OHCI-Controller hat prinzipiell die gleichen Fähigkeiten wie seine UHCI-Pendants, erledigt aber mehr Aufgaben in Hardware und ist dadurch marginal schneller als ein UHCI-Controller. Dieser Unterschied bewegt sich meistens in Bereichen, die gerade noch messbar sind, daher kann man ihn in der Benutzung vernachlässigen; Geräteentwickler müssen es jedoch berücksichtigen. Bei USB-Controllern auf Hauptplatinen mit Chipsätzen, die nicht von Intel oder VIA stammen, und auf USB-PCI-Steckkarten mit Nicht-VIA-Chipsätzen handelt es sich mit hoher Wahrscheinlichkeit um OHCI-Controller.
Enhanced Host Controller Interface
EHCI stellt USB-2.0-Funktionen bereit. Es wickelt dabei nur die Übertragungen im High-Speed-Modus (480 Mbit/s) ab. Wenn man USB-1.1-Geräte an einen Port mit EHCI-Chip steckt, reicht der EHCI-Controller den Datenverkehr an einen hinter ihm liegenden UHCI- oder OHCI-Controller weiter (alle Controller sind typischerweise auf demselben Chip). Wenn kein EHCI-Treiber verfügbar ist, werden High-Speed-Geräte ebenfalls an den USB-1.1-Controller durchgereicht und arbeiten dann soweit möglich mit langsamerer Geschwindigkeit.

Einstellungen und Schnittstellen

Intern adressiert der USB-Controller die angeschlossenen Geräte mit einer sieben Bit langen Kennung, wodurch sich die 127 maximal anschließbaren Geräte ergeben. Wenn an einem oder mehreren Ports neue Geräte detektiert werden, so schaltet der Host-Controller einen dieser Ports ein, sendet dem dort angeschlossenen Gerät einen Reset, indem die beiden Datenleitungen für mindesten 10 ms auf das Massepotential gelegt werden. Dadurch belegt das Gerät zunächst die Adresse 0 und bekommt dann vom Host eine eindeutige Adresse zugeteilt. Da immer nur ein Port mit noch nicht konfiguriertem Gerät aktiviert wird, kommt es zu keinen Adresskollisionen.

Der Host-Controller fragt meist zuerst nach einem Device-Deskriptor, der unter anderem die Hersteller- und Produkt-ID enthält. Mit weiteren Deskriptoren teilt das Gerät mit, welche alternativen Konfigurationen es besitzt, in die es von seinem Gerätetreiber geschaltet werden kann. Bei einer Webcam könnten diese Alternativen etwa darin bestehen, ob die Kamera eingeschaltet ist oder ob nur das Mikrofon läuft. Für den Controller ist dabei relevant, dass die unterschiedlichen Konfigurationen auch einen unterschiedlichen Strombedarf mit sich bringen. Ohne besondere Freigabe durch das Betriebssystem darf ein Gerät nicht mehr als 100 mA Strom benötigen.

Innerhalb einer Konfiguration kann das Gerät verschiedene Schnittstellen definieren, die jeweils über einen oder mehrere Endpunkte verfügen. Unterschiedlicher Bedarf an reservierter Datenrate wird über sogenannte Alternate Settings signalisiert. Ein Beispiel dafür ist eine Kamera (etwa eine Webcam), die Bilder in zwei verschiedenen Auflösungen senden kann. Das Alternate Setting 0 wird aktiviert, wenn ein Gerät keine Daten übertragen möchte und somit pausiert.

Geräteklassen

Damit nicht für jedes Gerät ein eigener Treiber nötig ist, definiert der USB-Standard verschiedene Geräteklassen, die sich durch generische Treiber steuern lassen. Auf diese Weise sind USB-Tastaturen, -Mäuse, USB-Massenspeicher, Kommunikations- („Communications Device Class“, kurz: CDC) und andere Geräte mit ihren grundlegenden Funktionen sofort verwendbar, ohne dass zuvor die Installation eines spezifischen Treibers notwendig ist. Herstellerspezifische Erweiterungen (die dann einen eigenen Treiber erfordern) sind möglich. Die Information, zu welchen Geräteklassen sich ein Gerät zählt, kann im Device-Deskriptor (wenn das Gerät nur einer Klasse angehört) oder in einem Interface-Deskriptor (bei Geräten, die zu mehreren Klassen gehören) untergebracht werden.

USB-Geräteklassen
Klasse Verwendung Beschreibung Beispiele
00h Gerät Composite Device Die Klasse wird auf Ebene der Interface-Deskriptoren definiert
01h Interface Audio Lautsprecher, Mikrofon, Soundkarte, MIDI
02h Beides Kommunikation und CDC-Steuerung Modem, Netzwerkkarte, Wi-Fi-Adapter
03h Interface HID Tastatur, Maus, Joystick etc.
05h Interface PID Physikalisches Feedback, etwa für Force-Feedback-Joysticks
06h Interface Bilder Digitalkamera
07h Interface Drucker Laserdrucker, Tintenstrahldrucker
08h Interface Massenspeicher USB-Stick, Memory-Card-Lesegerät, MP3-Player
09h Gerät USB-Hub Full-Speed Hub, High-Speed Hub
0Ah Interface CDC-Daten diese Klasse wird zusammen mit Klasse 02h verwendet
0Bh Interface Chipkarte Chipkarten-Lesegerät
0Dh Interface Content Security Finger-Print-Reader
0Eh Interface Video Webcam
0Fh Interface Personal Healthcare Pulsuhr
DCh Beides Diagnosegerät USB-Compliance-Testgerät
E0h Interface kabelloser Controller Bluetooth-Adapter, Microsoft RNDIS
EFh Beides Diverses ActiveSync-Gerät
FEh Interface softwarespezifisch IrDA-Brücke
FFh Beides herstellerspezifisch der Hersteller liefert einen Treiber mit

Übertragungsmodi

Der USB bietet den angeschlossenen Geräten verschiedene Übertragungsmodi an, die diese für jeden einzelnen Endpunkt festlegen können.

Endpunkte

USB-Geräte verfügen über eine Anzahl von durchnummerierten „Endpunkten“, gewissermaßen Unteradressen des Gerätes. Die Endpunkte sind in den Geräten hardwareseitig vorhanden und werden von der USB SIE (Serial Interface Engine) bedient. Über diese Endpunkte können voneinander unabhängige Datenströme laufen. Geräte mit mehreren getrennten Funktionen (Webcams, die Video und Audio übertragen) haben mehrere Endpunkte. Die Übertragungen von und zu den Endpunkten erfolgen meist unidirektional, für bidirektionale Übertragungen ist deshalb ein IN- und ein OUT-Endpunkt erforderlich (IN und OUT beziehen sich jeweils auf die Sicht des Hostcontrollers). Eine Ausnahme davon sind Endpunkte, die den sogenannten Control Transfer Mode verwenden.

In jedem USB-Gerät muss ein Endpunkt mit Adresse 0 vorhanden sein, über den die Erkennung und Konfiguration des Gerätes läuft, darüber hinaus kann er auch noch weitere Funktionen übernehmen. Endpunkt 0 verwendet immer den Control Transfer Mode.

Ein USB-Gerät darf maximal 31 Endpunkte haben: Den Control-Endpunkt (der eigentlich zwei Endpunkte zusammenfasst) und je 15 In- und 15 Out-Endpunkte. Low-Speed-Geräte sind auf Endpunkt 0 plus maximal zwei weitere Endpunkte im Interrupt Transfer Mode mit maximal 8 Bytes pro Transfer beschränkt.

Isochroner Transfer

Der isochrone Transfer ist für Daten geeignet, die eine garantierte Datenrate benötigen. Diese Transferart steht für Full-Speed- und High-Speed-Geräte zur Verfügung. Definiert das sogenannte Alternate Setting einen Endpunkt mit isochronem Transfer, so reserviert der Host-Controller-Treiber die erforderliche Datenrate. Steht diese Datenrate nicht zur Verfügung, so schlägt die Aktivierung des genannten Alternate Settings fehl, und es kann mit diesem Gerät keine isochrone Kommunikation aufgebaut werden.

Die erforderliche Datenrate ergibt sich aus dem Produkt des Abfrageintervalls und der Größe des Datenpuffers. Full-Speed-Geräte können jede Millisekunde bis zu 1023 Bytes je isochronem Endpunkt übertragen (1023 kbyte/s), High-Speed-Geräte können bis zu drei Übertragungen je Micro-Frame (125 µs) mit bis zu 1024 kbytes ausführen (24 Mbyte/s). Stehen in einem Gerät mehrere isochrone Endpunkte zur Verfügung, erhöht sich die Datenrate entsprechend. Die Übertragung ist mit einer Prüfnummer (CRC16) gesichert, wird aber bei einem Übertragungsfehler durch die Hardware nicht wiederholt. Der Empfänger kann erkennen, ob die Daten korrekt übertragen wurden. Isochrone Übertragungen werden zum Beispiel von der USB-Audio-Class benutzt, die bei externen USB-Soundkarten Verwendung findet.

Interrupt-Transfer

USB-Maus für Notebooks

Interrupt-Transfers dienen zur Übertragung von kleinen Datenmengen, die zu nicht genau bestimmbaren Zeitpunkten verfügbar sind. Im Endpoint Descriptor teilt das Gerät mit, in welchen maximalen Zeitabständen es nach neuen Daten gefragt werden möchte. Das kleinstmögliche Abfrageintervall beträgt bei Low-Speed 10 ms, bei Full-Speed 1 ms und bei High-Speed bis zu drei Abfragen in 125 µs. Bei Low-Speed können pro Abfrage bis zu 8 Byte, bei Full-Speed bis zu 64 Byte und bei High-Speed bis zu 1024 Byte übertragen werden. Daraus ergeben sich maximale Datenraten von 800 byte/s bei Low-Speed, 64 kbyte/s bei Full-Speed und bis zu 24 Mbyte/s bei High-Speed. Die Daten sind mit einer Prüfnummer (CRC16) gesichert und werden bei Übertragungsfehlern bis zu dreimal durch die Hardware wiederholt. Geräte der HID-Klasse (Human Interface Device), zum Beispiel Tastaturen, Mäuse und Joystics, übertragen die Daten über den Interrupt-Transfer.

Bulk-Transfer

Bulk-Transfers sind für große Datenmengen gedacht, die jedoch nicht zeitkritisch sind. Diese Transfers sind niedrig priorisiert und werden vom Controller durchgeführt, wenn alle isochronen und Interrupt-Transfers abgeschlossen sind und noch Datenrate übrig ist. Bulk-Transfers sind durch eine Prüfnummer (CRC16) gesichert und werden durch die Hardware bis zu dreimal wiederholt. Low-Speed-Geräte können diese Transferart nicht benutzen. Full-Speed-Geräte benutzen Puffer-Größen von 8, 16, 32 oder 64 Bytes. High-Speed-Geräte verwenden immer einen 512 Byte großen Puffer.

Control-Transfer

Control-Transfers sind eine besondere Art von Datentransfers, die einen Endpunkt erfordern, der sowohl In- als auch Out-Operationen durchführen kann. Control-Transfers werden generell in beide Richtungen bestätigt, so dass Sender und Empfänger immer sicher sein können, dass die Daten auch angekommen sind. Daher wird der Endpunkt 0 im Control-Transfer-Modus verwendet. Control-Transfers sind zum Beispiel nach dem Detektieren des USB-Geräts und zum Austausch der ersten Kommunikation elementar wichtig.

USB On-the-go

Logo für USB-OTG-Geräte
Logo für USB-HighSpeed-OTG-Geräte

Durch USB On-the-go (OTG) können entsprechend ausgerüstete Geräte miteinander kommunizieren, indem eines der beiden eine eingeschränkte Host-Funktionalität übernimmt. Dadurch kann auf einen Computer, der die Host-Funktion übernimmt, verzichtet werden. Mögliche Einsatzgebiete sind beispielsweise die Verbindung von Digitalkamera und Drucker oder der Austausch von Musikdateien zwischen zwei MP3-Spielern.

Gekennzeichnet werden USB-OTG-Produkte durch das USB-Logo mit zusätzlichem grünem Pfeil auf der Unterseite und weißem „On-The-Go“-Schriftzug. Die USB-OTG-Spezifikation wurde am 18. Dezember 2001 verabschiedet.

OTG-Geräte sind zum Beispiel die seit November 2007 erhältlichen Nokia-Telefone 6500c, N8, C7, N810, das Samsung Galaxy S II, sowie einige externe Festplatten zum direkten Anschluss an Digitalkameras.

Wireless USB

Datei:USB Wireless certified Logo.svgpng
Logo für die zertifizierten Geräte aus dem Intel-Wireless-USB-Projekt

Momentan besetzen zwei Initiativen den Begriff „Wireless USB“. Die ältere der beiden wurde von dem Unternehmen Cypress initiiert, mittlerweile ist Atmel als zweiter Chiphersteller auf den Zug aufgesprungen. Das „Cypress-WirelessUSB“-System ist eigentlich kein drahtloses USB, sondern eine Technik, um drahtlose Endgeräte zu bauen, die dann über einen am USB angeschlossenen Empfänger/Sender (Transceiver) mit dem Computer verbunden sind. Dazu wird eine Übertragungstechnik im lizenzfreien 2,4-GHz-Band benutzt, die Datenrate beträgt bis zu 62,5 kbit/s (neuere Chips von Cypress erreichen 1 Mbit/s) und ist damit für Eingabegeräte völlig ausreichend, für andere Anwendungen aber oft zu knapp bemessen.

Das zweite Wireless-USB-Projekt wird von der USB-IF vorangetrieben und ist wesentlich anspruchsvoller, neben Intel ist auch NEC dabei, entsprechende Chips zu entwickeln. Ziel ist es, eine Technik zu schaffen, mit der die vollen 480 Mbit/s des High-Speed-Übertragungsmodus drahtlos übertragen werden können. Dabei ist eine kurze Reichweite unter 10 m vorgesehen; die Übertragung soll auf einer Ultrabreitband-Technik basieren. Am 16. Januar 2008 gab die Bundesnetzagentur für die Ultrabreitband-Technik Frequenzbereiche frei. Der dabei für USB vorgesehene Bereich von 6 bis 8,5 GHz ist jedoch nicht so breit wie von USB-IF spezifiziert, so dass Geräte aus anderen Ländern eventuell in Deutschland nicht verwendet werden dürfen.

Datenraten

Datei:USB-certified-Logo.svg
Logo für USB-LowSpeed- oder -FullSpeed-zertifizierte Geräte